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The effect of currents flowing across a bar field on resonant reflection of surface waves 
by the bars is investigated. Using a multiple-scale expansion, evolution equations for 
the amplitudes of linear waves are derived and used to investigate the reflection of 
periodic wave trains with steady amplitude for both normal and oblique incidence. 
The presence of a current is found to shift resonant frequencies by possibly 
significant amounts and is also found to enhance reflection of waves by bar fields due 
to the additional effect of the perturbed current field. 

1. Introduction 
The possibility of obtaining strong reflections of incident surface water waves 

through interaction with undular topography has drawn attention in recent years to 
the mechanism’s possible impact on coastal geomorphology. Davies & Heathershaw 
(1984) have investigated bottom topographies of the form 

h(x) = &+6(z), (1.1) 

where h(x) denotes total water depth, h represents a steady mean depth and 
S(x) represents a small-amplitude, rapid perturbation. ‘ Small amplitude ’ implies 
Jk8J -4 1 in general scaling or IS/hl < 1 in shallow-water scaling. In  experiments to 
date, S(x) has been given the simple form 

S(x)  = D sinhx; 0 < x < L. (1 3 
This represents a long-crested bar field confined in the region (0 < x < L)  consisting 
of n bars, with uniform bar amplitude D and bar wavenumber h constrained 
according to h = 2nn/L. The sinusoidal form is convenient in that it is physically 
plausible and contributes only a single wave-like perturbation in the mathematical 
analysis. Davies & Heathershaw experimented with normally incident waves of 
variable wavenumber-frequency ( k ,  w }  and clearly demonstrated a strong resonance 
in the neighbourhood of 2 k / h  = 1,  leading to greatly enhanced reflection. They 
pointed out the analogy between this resonance and Bragg-scattering in crys- 
tallography, but provided an analysis only for the case of weak reflection. Their 
analysis, done in the context of regular perturbations, breaks down at the resonance 
condition. 

Mei (1985) examined the neighbourhood of the resonance directly using a resonant- 
interaction analysis and obtained good predictions of the maximum reflections 
observed in Davies & Heathershaw’s experiments. Mei also examined the case of 
detuned interaction, where wave frequency w is allowed to deviate from resonant 
frequency wo by an amount 9. No direct comparison was made between the 
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predictions for detuned waves and data. Kirby (1986) provided an extension of the 
mild-slope equation to handle the general case of arbitrarily varying 6(x,  y) on a 
slowly varying mean depth h(x, y). Numerical simulation of Davies & Heathershaw's 
experiments also provided good reproduction of measured reflection coefficients. 
Hara & Mei (1987) have extended the resonant-interaction theory to second order in 
IS] and have performed additional experiments which illustrate the existence of a 
cutoff condition for frequency 8, which is explained further below. 

The existence of the Bragg scattering mechanism provides a possible means for 
constructing coastal protection devices which are relatively low in profile in 
comparison to local water depth. The installation of such an artificial bar field 
fronting a beach may provide a means for significantly reducing wave energy 
arriving a t  the surf zone. Given that any such installation would necessarily be of 
finite extent in the longshore direction, it is likely that the resulting localized 
depression in maximum set-up behind the bar field would generate a nearshore 
circulation pattern. Prediction of such a pattern depends on future hydrodynamic 
modelling. However, its result would be to introduce onshore or (more likely) offshore 
flows over the bar field. In order to evaluate the effectiveness of the bar field in the 
presence of an induced circulation, it is necessary to understand the effect of 
wave-current interaction over the bar field. 

I n  this study, we examine the reduced case of the propagation of waves over a bar 
field 6(x)  resting on an otherwise flat bottom z = - h. Not accounting for the bar-field 
perturbation, the current field {U,, V,} is taken to be constant and of the order of 
linear wave phase speed (e.g. O(1)) in the perturbation analysis. In  $2, we state the 
full problem and then give the solutions for the steady flow to 0(6), following 
Kennedy (1963) and Reynolds (1965). Then, in $3, we examine the current's effect 
on the conditions for Bragg resonance. The evolution equations for the linear wave 
scattering problem are constructed in $4. Solutions and various examples for normal 
wave incidence are examined in $5.  Finally, in $6 we provide sufficient information 
to construct the similar solutions for the oblique-incidence case. 

2. Solution for the perturbed mean flow 
We first solve for the flow field and surface displacement resulting from the 

interaction of a uniform flow {Uo,  V,} and bottom displacement 6(x) given by (1.2). 
Figure 1 illustrates the various quantities described below. The full problem for 
waves and current may be written in terms of surface displacement 7 and velocity 
potential q5 according to 

z = 7, 

(2.la) 

(2.1 b)  

(2.lc) 

(2.1 d )  

where e denotes the effect of the small bottom perturbation. Noting that only linear 
wave motion is to be considered, we may split q5, 7 and c into time-steady parts 
associated with the current and time-harmonic parts associated with the waves : 

(2.2a, b, c) 
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t 
FIQURE 1. Definition sketch. 

Substituting (2 .2 )  in (2 .1 )  and isolating time-steady terms yields 

We now introduce the expansion 

4 c  = 4 o c  + 4 l C  9 

b = b,+sb,, 

c = c,+scl.  

( 2 . 4 ~ )  

(2 .46)  

( 2 . 4 ~ )  

At O(1) we obtain the solution for the undisturbed current field: 

#oc = (U ,X+T/ ' ,Y) ,  (2 .5 )  

b, = 0, (2 .6 )  

c, = ;cu;+ v;), (2 .7 )  

where c, is chosen so as to render the O(1) depth equal to h. We define Froude 
numbers associated with the horizontal currents according to 

At O ( B ) ,  we obtain the problem considered by Kennedy (1963) and Reynolds (1965),  
restricted here to the case of time-steady bottoms. The solution to that problem is 
given by 

$lc = {p  cosh h(h + z )  + a sinh h(h + z ) }  eiAs + C.C. , (2 .9 )  

- ihhFt D eiAs 
b, = + C.C., 

201 cosh Ah 
(2 .10)  

where a = hhFt - tanh Ah, 

/3 = l-AhFi tanhhh. 

( 2 . 1 1 ~ )  

(2.11b)  
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The perturbed flow field has a singularity a t  the zero of a, which corresponds to the 
dispersion relation for a steady wave of wavenumber h riding on current U,. The 
singularity is thus due to a resonance of the free wave by the bottom forcing. Mei 
(1969) has shown that this singularity may be removed in a higher-order nonlinear 
analysis. The corresponding critical Froude number F,, is given by 

( 2 . 1 2 )  F,, = k (tanh hhlhh);. 

The long-wave limit (Ah + 0) gives the values 

which are solutions of the appropriate shallow-water equations 

~ o ~ , , + g b , ,  = 0, 

{hu, + (b ,  - 6)  U,}, = 0. 

( 2 . 1 3 ~ )  

(2 .136)  

( 2 . 1 4 ~ )  

(2 .14b)  

3. Conditions for Bragg Resonance 
The presence of currents has a strong influence on the geometry of the wavenumber 

triad taking part in the resonant Bragg interaction. Denoting the wavenumber 
vectors for the incident and reflected waves by k,  = (Z,, m,) and k,  = ( -I,, m,) (where 
1, is taken positive), respectively, we may write the conditions for three-wave 
resonance as 

kl-1  = k,, w,-O = w,. (3.1 a ,  b)  

Equation (3.1 b )  imposes a uniform frequency on the incident and reflected wave. The 
wavenumber vector 1 represents the effect of the bar field. Angles of incidence Oi with 
respect to the x-axis are defined according to 

Zi = Iki cos Oil 

mi = k, sin Oi ,  

(defined positive), 

ki = lkil = (Zt+m$. 

( 3 . 2 a )  

( 3 . 2 b )  

( 3 . 2 c )  

The geometry of a resonant triad is indicated in figure 2. Expanding (3.1 a )  in x- and 
y-components then gives the conditions 

I,-h = - z 2 ;  h = 111, (3 .3a )  

m, = m2, (3 .3h)  

where (3 .3b )  represents conservation of wave crests and ( 3 . 3 ~ )  is the main Bragg 
condition. The free-wave dispersion relations for each component k,, k,  may bc 
written as 

(o - k ,  ~ ( 0 , ) ) ~  = gk,  tanh k ,  h, ( 3 . 4 ~ ~ )  

(w - k ,  ~ ( 0 , ) ) ~  = gk,  tanh k, h, (3.4b) 

(3.5) where y( 0) = U ,  cos 0 + V, sin 0. 
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FIGURE 2.  Geometry of the three-wave interaction. 

We define the two intrinsic frequencies to be 

bi = W-k,y(e,) .  

The currents U ,  and V ,  are defined to be positive when they flow in the positive sense 
in each coordinate. We assume that each wave has a positive propagation sense in the 
y-direction. For later convenience, we define 

- 
8, = (3.7) 

as the acute angle for the second wave component. 
It is clear that g2 will not equal 8, except in the case of no currents. Further, from 

(3.36), we require k, > k, sine, for the reflected wave to be freely propagating. For 
k, = k, sin el, the k, (reflected) wave field is travelling along the patch in the 
y-direction. For k, < k, sin 8,, the reflected wave field will be evanescent away from 
the bar field and hence will be trapped over the bars. This case does not correspond 
to a resonant case in the sense used below, and its description would require a 
separate formulation. The limiting conditions corresponding to this case may be 
directly obtained. We take 

k,  = k, sin 8, ; 8, = in (3.8) 

and substitute (3.8) and (3.3a) in (3.4) to obtain 

tan 8, tanh (Ah tan8,))a-( Ah cos8, tanh(*))l case, (3.9) 

where FA is the critical value of Fz. I n  the limiting case of small Ah, we obtain 
directly 

sin 8, - 1 
FA = 

cos8, . (3.10) 

Plots of FA versus 8, for a range of Ah-values are given in figure 3. 

resonant interaction reduces to 
We consider first the case of normal incidence on the bar field. The condition for 

(3.11) k, + k, = A. 

In the absence of current U,, (3.11) reduces simply to 2k/A = 1.  Assuming x-direction 
propagation only and using (3.11) to eliminate k, from (3.4b) gives the relations 

(w - k, U ) ,  = gk, tanh k, h, ( 3 . 1 2 ~ )  

(3.12b) ( w + ( A - k , )  U ) ,  = g ( A - k , )  tanh(A-k,)h, 
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FIQURE 3. Limiting Froude number FA (3.11) for oblique angle 8, of incident wave. Ah = 0 
corresponds to long-wave asymptote. 

- 1  -0.75 -0.50 -0.25 0 0.25 0.50 0.75 

Fz 

FIQURE 4. Resonant value of 2k, /h,  2k , /A versus Froude number F, for various Ah-values. Normal 
incidence. -, resonance condition ; ---, values of stopping Froude number F,,,, (3.17) for given 
k,, k,; -, outer envelope of resonant wave conditions involving waves which may propagate to 
still water. 

which in general may be solved numerically for the resonant frequency w, and 
normalized incident wavenumber (2k,/h), .  The long-wave limit (Ah + 0) may be 
solved directly to obtain 

(T) =1-F,; (?), = 1 +F,, F, >< 0, 
r 

and the wave frequency at resonance is 

w, = +(gh)h(l-Iij52). 

(3.13) 

(3.14) 
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FIQURE 5. Normalized o,/w,,, versus F, for various hh-values. Normal incidence. 

Plots of 2kJA versus F, are given for values of Ah ranging from 0 to 5 in figure 4. (For 
comparison, hh-values in the experiments of Davies & Heathershaw ranged from 
0.79 to 3.14.) For hh-values greater than 5 or 6, the water is effectively deep and the 
bars have very little influence on the surface waves, unless the current speed is near 
the resonance condition Fzc (2.12). The effect that approaching this condition has on 
the reflection process is illustrated in $5. The choices of possible or are limited by the 
restriction that the current should not be a stopping current for either wave 
component (Cl ,  C ,  =I= 0 in (4.24)), which gives 

(3.15) 

where the ui are given by (3.6) with y(0)  = U,. This condition may be written in the 
notation of this section as 

tanh [ (!$) (+Ah)] ’ 
(3.16) 

1 
IF2 < 4,d = 2 (F) ($Ah) 

where subscript s denotes ‘stopping’ Froude number. These limits are illustrated by 
light dashed lines in figure 4 for various choices of Ah, in comparison with the curves 
denoting resonance conditions. The heavy solid curves represent envelopes of 
possible resonance conditions representing waves which are both free to propagate 
into or from regions with weaker currents. We note that the interaction curves 
intersect 2kJA = 0 ,2  at the values of the critical Froude number Fxc given by (2.12), 
which represents the case of a stationary wave of wavenumber h over the bar field. 
The stopping current conditions Fs, are more stringent for finite depths. 

In  figure 5, the ratio of resonant frequency w, to resonant frequency in the absence 
of current w,,, is plotted for several hh-values. The decrease in frequency for all Ah 
is symmetric in F,, as in the shallow-water limit. For relatively large values of 

17 FLM 186 
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F Z  

FIGURE 6. Resonant values of 21,/A, 21,lA. Oblique incidence, 8, = 20". -, resonance condition: 
- ~ _  , stopping Froude numbers F,,,, for given I , ,  1,; -, envelope of possible resonant conditions. 

FZ 

FIGURE 7. As in figure 6. Oblique incidence, 8, = 40'. 
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FIGURE 8. Normalized w,/wr0 for oblique incidence, 8, = 40". 

Ah ( - 3 - 5 ) ,  the decrease in resonant frequency can be quite significant a t  realizable 
current values. 

Turning to the case of oblique incidence, it becomes necessary to solve the full set 
of equations (3 .3 )  and ( 3 . 4 )  for the unknown w,, (2k1 /h) , ,  (2k, /A) ,  and 0, given Ah and 
angle of incidence 0,. As before, the shallow-water limit hh+O may be solved 
directly ; we obtain the results 

1 + Fz + 2F, cos 0, (?), = (F, + cos 0,) ' 

- sin el( 1 - F i )  
1 + F i  + 2F, COB 0, 

0, = sin-' 

(3 .17)  

(3 .18)  

(3 .19)  

(3 .20)  

Plots of values of (2Z1/A)r and (2Z2/A), versus Fx are given in figures 6 and 7 for 
0' = 20" and 40", respectively. The resonance conditions become distinctly 
asymmetric with respect to currents opposing or following the incident wave. For 
opposing currents (2Z1/h)+2 a t  the limiting value FA given in ( 3 . 9 ) ,  whereas for 
following currents the critical condition is still Fxc. The value of FA may also be a 
more stringent limit than Fs, , depending on Ah and the angle of incidence. For these 
plots, we have taken F, = 0.  The pronounced asymmetry in the interaction 
conditions are also strongly apparent in the resonant frequency, which is plotted in 
figure 8 for the case of 0, = 40". 
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4. Governing equations for varying wave amplitude 
We now consider the problem of reflection linear time-harmonic waves. We drop 

subscript w in (2.2) and denote the wave velocity potential by $ and the surface 
displacement by 7. Expanding the surface boundary conditions about z = 0, 
linearizing in $ and 7 and retaining terms to O(e)  in the undulations (where e simply 
characterizes the vertical scale of S ( X ) ) ,  we obtain 

v; $ + $,, = 0, - h  < z < 0, (4.1) 

$ z  = " h  ' (Svh $) z = -h,  (4.2) 

z = 0, (4.3) 
D7 
-+e(u1 T x  + $231 ,  z) = $2 +e@1 $22 + T W l , Z ) >  Dt 

Dt + u14, + w1 $2 - s-lU, ul,2 - D$)=O, Dt z = o ,  (4.4) 

where ( u l ,  wl) = V$lc. Also, D/Dt denotes a total derivative following the uniform 
flow field (Uo,  Vo), 

~a a a 
= - + U o - + V o - .  (4.5) - 

Dt at ax ay 

Surface displacement 7 may be eliminated between (4.3)-(4.4) to  give a combined 
surface boundary condition 

We introduce the expansions 

$4 = $ o + E $ l +  ... ) 7 = q 0 + q 1 +  .... (4.7 a, 6) 

Anticipating that wave amplitudes will vary over the bar field on a lengthscale 
commensurate with the interaction effect, we introduce the following multiple 
scales : 

X - t X + € X +  . . .  = X+X1, (4.8a) 

y + y + q +  ... = y+Y1, 

t - t t + e t +  ... = t+Tl.  

(4.8b) 

( 4 . 8 ~ )  

Substituting (4.7)-(4.8) into (4.1), (4.2) and (4.6) yields the following problems after 
collecting terms of 0(1) and O(E)  : 

(4.9a) 

(4.9C) 
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v;dl+dl,zz =H1, - h < z < O ,  (4.10a) 

d 1 , Z  = Bl, z = - h ,  (4.10b) 

where 

(4 .10~)  

(4.11a) 

z = - h ,  (4.11b) 

G, = 2(2)T1+2U0~$)x1+2V0~$) , z = 0, (4 .11~)  
Yl 

(4.11 d )  

Here, G, contains slow-scale effects and G, contains the influence of the fluctuating 
current through the surface boundary conditions. We choose do to be of the form 

do = $+(XI, Y,,T,;z)  eiS1+$-(X,, Yl,T,;z) eiSz+c.c., (4.12) 

where S, = l,x+my-wt; S, = -l,x+my-wt (4.13) 

represent the phase functions of the incidental and reflected wave, respectively. 
Substituting (4.12)-(4.13) in (4.9) yields the results 

cosh k,(h + x )  
cosh k, h ' 

$-(X1, Y,,T,;z) = - W ( X , ,  Y,,T,) 

(4.14a) 

(4.14b) 

where k, ,  k, and w are related by (3.4), and where A and B are surface displacement 
amplitudes divided by intrinsic frequency. We note that the local action densities for 
each wave train are then proportional to v,IA12 and v,lB12. 

Turning to the O(s)  problem, we write 4, as 

#, = $(XI, Y,,T,;z) eiS1+c-(Xl, Y,,T';z) eiSz+c.c. (4.15) 

Following the procedure outlined by Mei (1985), we may decompose B,, H,, G, and 
G, into eiSl and eis2 components ; for example 

B, = B,, eiSl + B,, eiS2 + C.C. (4.16) 

Noting that 8,-S, = Ax, where h = 1 1 + 1 2  a t  resonance, and recalling that B, and 
G, contain rapidly fluctuating terms, we obtain the set of problems 

CA - k; s = H,,, (4.17 a) 

c' = B,, e-ihz z = - h ,  (4.17 b) 

v: c+ - gc: = G,, + G,, epihs, (4 .17~)  

- h  < z < 0, 

z = 0 ; 
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and c&-k;c- = H,,, - h < z < O ,  (4.18a) 

c; = B,, eiA", z = - h ,  (4.18b) 

cr:c---gc; = G,,+G,, eiAx, z = 0. (4.18~) 

Each problem has the homogeneous solut,ion cg--) = $(+,-), and so solvability 
conditions are required. Use of Green's second identity on (4.17) and (4.18) 
separately gives the conditions 

1 

9 
$+H,, dz +- (G,, + G,, ePiA5) $+(O) + B,, e-iA5 $'( - h)  = 0, (4.19a) 

1 

g 
$-Hl ,  dz + - (G,, + G,, eiAs) $-(O) + B,, eiA5$-( - h) = 0. (4.19 b )  

Substituting for the inhomogeneous terms then gives the following set of evolution 
equations for A and B :  

' { A T 1 + ( C g ,  cosO,+Uo)Ax,+(Cg, sin8,+VO)Ay1} = - Q c B ,  
0- 

w 
(4.80a) 

- { B T 1 + ( - C g ,  V2 cos6,+U,)BxI+(Cg, sin8,+ VO)By1} = Q , A .  (4.20b) 
0 

The interaction coefficient Qc is given by 

Q, = Qoc cos (0, + 8,) +QIC,  (4.21) 

where gk, k ,  D 
Qoc = 40 cosh k ,  h cosh k ,  h '  

(4.22a) 

where ct is given by ( 2 . 1 1 ~ ) .  In the absence of currents, a,, = 0 and 

cos 20, 
gk2D gh2D 

cos20 = " --f 4w cosh, kh 160 cosh2 (+Ah) 
(4.23) 

and the evolution equations given by Mei (1985) are recovered after taking 
V, = V, = w and converting to surface displacement amplitudes. 

For the special case of normal incidence (a/ay = 0 ) ,  (4.20) may be reduced to the 
form 

( 4 . 2 4 ~ )  AT,+CIAxl = - -B,  QC w 
V1 

B T l - C 2 B x l  = - A ,  QC w 

g 2  

(4.24 b )  

where c, = Cg,+U,; c, = cg,-u, (4.2.5 a ,  6) 

These equations may be rearranged to read 

(4.26) 
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where A = C, -C2, (4.27) 

(4.28) 

These equations differ in form from the Klein-Gordon equafions obtained in the no- 
current case ; however, a phase shift introduced in A and B will lead to solutions with 
forms similar to those obtained by Mei. 

Alternately, (4.24) may be arranged in the form 

{~,142 + (72IBl2)T1 + b,142C, - (72lBlZC2)x1 = 0, (4.29) 

which indicates conservation of wave action during the reflection process. 

5. Normally incident waves over a finite bar field 
We now consider a periodic wave train propagating from x - - co over a bar field 

located in the spatial interval 0 Q x Q L. We take 1 = 2x/h to be the bar wavelength 
and require I; = - nl, where n is an integer 2 1. The waves are assumed to be normally 
incident (0, = 0, = 0,1, = k,, 1, = k,, a/ay = 0). The resonant wave frequency is 
taken to be w,, and the wave train is allowed to have a slightly detuned frequency 
w = w , + d 2 .  (We retain Mei’s notation as far as possible in this section in order to 
facilitate comparisons.) The corresponding detuned wavenumbers are then 

Ic,+€K,; Q =  C,K,, 

k , + e K , ;  52 = C,K,. 

(5.1 a )  

(5.1 b )  

5.1. The solutions for periodic wave trains 
In the region upwave of the patch, the homogeneous solutions to  (4.26) are given 

by A = A,  ei(K,x-Qt). > z < o ,  ( 5 . 2 ~ )  

B = B, ei(-K,x-Qt). , x < o .  (5.2b) 

Downwave of the patch, we require B(x  > L )  = 0 representing no wave arriving 
from x - CO. Boundary conditions consist of continuity requirements on A and B 
a t  x = 0, L. Over the bar field, we introduce the forms 

A(X, t )  = A ( x )  epi*t; ~ ( x ,  t )  = B(x) e-iQt. (5.3) 

Introduction of (5.3) in (4.26) then gives 

where 0 = d52(C,C2)-~, 

(P’y = (C, C2)-1(Q2- (a;)”). 
A final substitution gives equations analogous to Mei’s; let 

A(x) = J(x) e-i@x/z; B(x) = B(x) e-i@2/2 

to obtain ( 3 x x + P 2 ( ; )  = 0, 

(5.4) 

where P2 = ( P ) 2 + * 0 2 .  (5.9) 
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A value of 52 corresponding to a cutoff condition may be found by determining the 
zero of P2 ; the resulting condition is 

(5.10) 

In  the absence of currents, the cutoff frequency is given by fa, as in Mei. We 
examine the four corresponding cases. 

Case 1.  P 2  > 0 (frequency above cutoff) 
The solutions to (5.8) and hence (4.28) are found to be 

{PC, cosP(L-x)-iQ’ sinP(L-z)} -iRt 
A(%, t )  = A, e-i*x/2 e ,  (5.11) 

{PC, cos PL - iQ’ sin PL} 

(5.12) 

where 9’= Q++C,O. (5.13) 

The reflected and transmitted wave intensities are oscillatory over the bar field and 
also oscillate with bar-field length. t 
Case 2 .  P2 = 0 (cutoff frequency) 

Case 3 .  P 2  < 0 (frequency below cutoff) 
We take Q = i P  

and obtain 
{QC, coshQ(L-x)+iQ’ sinhQ(L-x)} -ii2t 

e ,  
{QC, cosh QL + iQ’ sinh QL) 

~ ( x ,  t )  = A ,  e-isx/2 

Case 4. Q = 0 (perfect tuning) 
The coefficient Q2 from (5.16) reduces to 

Qz = (Q;)2(C,C2)-1. 

We obtain the results 
cash Q(L - X) 

coshQL ’ A($, t) = A ( z )  = A ,  

* C, isinhQ(L-x) B(x,t) = B ( X )  = - A ,  (zj(G) coshQL ‘ 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

t We note that the reflected waves given here differ in phase by 45’ from Mei’s results; this stems 
from his choosing bottom modulation 4 = D cos Ax and starting the patch a t  x = 0. The approach 
used here (+ - sin A x )  represents a continuous bottom. 
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The reflection coefficient is given by 

(5.22) 

Note that as L + co, the reflection coefficient differs from unity owing to wave- 
current effects. 

We note that the solutions for cases 1 4  all satisfy the condition 

~1A:c,-~,lB(0)12C, = ~,IA(L)I2C,, (5.23) 

which represents conservation of action flux during the reflection process, as follows 
from (4.29). 

5.2. Effect of currents on transmission over the bar field 

We now consider the effect of introducing a current on the reflection-transmission 
process. In order to simplify the discussion as much as possible, we shall consider 
effects only a t  or close to exactly tuned resonance. Further, all comparisons will be 
based on transmission coefficients in order to avoid the problem of intrinsic- 
frequency effects in the definitions of the incident and reflected wave action flux. Two 
examples are considered. 

Example 1. Effect of current on transmission at resonance 
We first consider the effect of a current on the magnitude of transmission past a 

bar field of length L. The reflection process with or without currents is assumed to 
be perfectly tuned, and thus the wave frequency is assumed to adjust as the current 
speed changes, in order to maintain resonance. 

Considering the result for Q = 0, we obtain 

where 

= (cosh Q, L)-', 
E l c u r r e n t  

= (cosh QL)-', 
E l n o  current 

(5.24) 

(5.25) 

(5.26a, b )  

The ratio of transmission with current to transmission with no current is then given 
b s  

(5.27) 

For the special case of the long-wave limit, all relative phase and group velocities 
+ (gh);, and we obtain 

AD Q+z; nxD 
4h ' 

QL=-  (5.28) 

(5.29) 

where n is the number of bars. Note that Q, has a singularity a t  IF,I --f 1, which 
corresponds to the stopping condition for either the incident or reflected wave. For 
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FIGURE 9. Ratio of transmission coefficient without current. Normal incidence, frequency held at 
resonant value. (a )  n = 2, D/h  = 0.3; (b) n = 10, D/h  = 0.2. -, Ah = 0 ;  ---, 1 ; -.-, 2 ;  -..-, 
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lFxl < 1, we have Q, > Q and hence the ratio of transmission coefficients is less than 
unity for Fz =/= 0. This result indicates that the reflection process is enhanced by the 
presence of a current as long as resonance conditions are maintained, owing to the 
additional interaction effects introduced through the surface boundary conditions. 

Results for two cases (n = 2 ,  D / h  = 0.3; n = 10, Dlh = 0.2) are presented in figure 
9 for Ah = 1 , 2 , 3 , 4  and the long-wave limit. The ratio TA is symmetric in F, and drops 
to zero (representing a singularity in the interaction) when IFXI goes to the stopping 
condition Fs predicted by (3.17). (For larger values of Ah, coupling is weak and TA is 
affected mainly by the singularity a t  Fs.) In  all cases, the presence of a current of 
arbitrary sign reduces transmission at  resonance, and it may therefore be concluded 
that wave-current interaction uniformly enhances resonant reflection of normally 
incident waves. 
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Example 2. Deviation from resonance at $xed frequency 

condition in the absence of currents: 
We now consider the case where a wave frequency w,, is chosen by the resonance 

wf, = bA tanhihh. (5.30) 

The wave field is then assumed to maintain this fixed absolute frequency as the 
current speed varies from zero, leading to detuning. We thus consider how the 
magnitude of transmission varies as resonant conditions established for one set of 
parameters are detuned owing to a shift to another set of parameters. For any given 
non-zero current speed, the detuning frequency is given by 

wro = w,+Q, (5.31) 

where w, is determined from (3.3)-(3.4). The behaviour of the detuned envelope over 
the bar field may then take on any of the Case 1 4  behaviours depending on the size 
of 52 relative to the cutoff frequency predicted by (5.10). Again, we investigate this 
case in the limit Ah --f 0 before presenting graphical results. 

Substituting long-wave values into (5.10) gives the cutoff condition as 

(5.32) 

The detuning frequency is given by (5.31) : 

and hence the cutoff condition is met by introducing a current with magnitude 

2 

F;  = (2). (5.34) 

For example, for h = 2 m and a bar height D/h = 0.2, a current with F t  = 0.05 or 
velocity = & 1.00 m/s would be sufficient to shift the parameter 52 to just above the 
cutoff condition. These conditions would not be unreasonable in the nearshore 
environment. 

Two computational examples corresponding to (n = 2, D/h = 0.3) and (n = 10, 
D / h  = 0.2) are plotted in figure 10 for Ah = 1 ,  2, 3, 4 and the long-wave limit. The 
case with two bars represents a weakly tuned system with a broad and weak 
resonant-reflection peak (see, for example, figure 6 c  in Davies & Heathershaw 1984). 
Consequently, transmission coefficients for tuned and untuned cases are close to 
unity and variations with Froude number Fz are thus weak. In  contrast, the case 
(n  = 10, D / h  = 0.2) represents a sharply tuned system with a narrow, strong 
resonant-reflection peak (see figure 6 a  in Davies & Heathershaw or figure 2 in Kirby 
1986). In  the neighbourhood of the resonant peak, the transmission coefficient drops 
significantly below unity and only rises close to unity in the regions beyond the cutoff 
condition, touching unity a t  zeros of the reflection. 

The form of TA, defined initially in (5.27) as TA = JA(L)current/A(L)nocurrentl, will 
change according to which of (5.11), (5.14) or (5.17) is the appropriate solution. We 
expect TA = 1 at F, = 0, and TA --f cosh QL far from resonance. The numerical results 
indicate this trend. For values of Fx close to zero (52 below cutoff), the results show 
a possibly unexpected drop in TA below unity, indicating that reflection is increasing 
slightly, even as detuning increases, owing to the significant additional wave-current 
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effect. As Fx increases (and 52 goes through cutoff), TA increases and finally 
approaches cosh QL in a damped oscillatory fashion. Values of Fx corresponding to 
cutoff conditions are indicated by vertical bars in figure 10. 

6. Oblique wave incidence 
We now briefly consider the case of waves arriving a t  the bar field with angle of 

incidence R,, and provide sufficient information to construct solutions following $5. 
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We rewrite the governing equations (4.20) as 

At+Cl,A,+Cl,A, = -Q, - B,  ( 6 . l a )  

Bt-C2,B,+C,,B,=Q, - A ,  ( 6 . l b )  

(6.2a, b)  C,, = Cg, sin 0, + V,, 

C,, = Cg, sin 8, + V,. ( 6 . 2 c ,  d )  

Upwave of the bar field (x < 0) and assuming that incident wave modulations 
propagate in the same direction as the carrier wave, we may write homogeneous 
solutions of (6.1) in the form 

(6.3a) 

(6.3b) 

(3 
(3 

where C,, = Cg, cos 8, + U,, 

C,, = Cg, cos 8, - U,, 
- - 

A = A ,  exp[i(K, cos8,x+K1 sin8,y-Qt)], 

B = B, exp[i(-K, cos8;x+K2 sindLy-Qt)], 

where Q = K ,  C,, cos 8, +K,  C,, sin 8,, 

Q = K ,  C,, cos 8; + K, C,, sin 8;, 

and where we require K, sin8, = K ,  sine; = M 

(6.4a)  

(6.4b) 

(6 .5)  

owing to wave-crest conservation. Note that 0; differs from 8,, since the wavenumber 
vector for the reflected wave will tend to rotate as frequency shifts away from the 
resonant value. Equations (6.4)-(6.5) are used to determine K,, K ,  and 8; after 
determination of the resonant-interaction condition. 

over the bar field and obtain @,,+F$) = 0, 

f J l X f J 2 X  

@ =  ,. Cl, Q, -Czx Ql 

C I X  c,, > 

0, = 52-MC,,, 

52, = 52-MC,,. 

The cutoff condition is determined from the equation 

52% [ 1 + (4x)2 ] - (w) G, + (w)2G, = 
4C1,C2, 

where A" = C,, - C,,, 

(6.8b) 

( 6 . 8 ~ )  

(6.8d) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 
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These results are sufficient to +ete_rmine the solutions for K ( x ) ,  B(x)  from (5.1 1)-(5.21) 
after substituting ( p ,  Q, C1,, SZ', 0) for (P, Q, C,, SZ', O), where 

Q = iF, (6.13) 

8' = SZ-MCl,+$l,&. (6.14) 

7. Discussion 
The presence of an ambient current field has been shown to have non-trivial effects 

on the reflective characteristics of a submerged bar field. The presence of a current 
flowing offshore over the bar field, opposing the incident wave, is shown to place 
significant limitations on the geometry of resonant wave triads, which are possible 
when the incident wave is oblique to the bar field. 

Application of the present results in realistic field situations requires the 
development of an equivalent theory for waves in a slowly varying domain, which 
would give appropriate extension to the evolution equation (4.20). This extension is 
being investigated separately in the context of arbitrarily varying domains and the 
parabolic approximation, and will be reported shortly. 

This work was supported by the Office of Naval Research through contract 
number N00014-86-K-0790. Conversations with J. A. Bailard, R. T. Guza and D. M. 
Hanes were instrumental in sparking interest in this problem. 
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